
Re-architecting a Large Code Base

The “Remodularization” of Xenon

Timothy High (timothy.high@sknt.com)
Software Architect
Sakonnet Technologies (www.sknt.com)

Ian Sutton (ian.sutton@headwaysoftware.com)
Chief Architect
Headway Software (www.headwaysoftware.com)



2

Sakonnet Company Profile

• SaaS leader in the ETRM space
• ~35 developers

– Java, PL/SQL
– All experienced or senior
– All architects are “hands-on”

• Distributed team (NY, Rio, Germany)
• Not afraid of changes

– Award-winning migration from Websphere to JBoss
– ObjectStore to Oracle migration



3

About Xenon

• Software Characteristics
– Same code base since 1999 
– Java & PL/SQL
– JBoss/J2EE/Spring/Oracle
– 5600 public classes, 738 KLOC (Java only)
– Strong domain layer (a Martin Fowler-style Domain Model)
– Persistence: ObjectStore (OODBMS) à Hibernate + Oracle



4

System Architecture



5

Remodularization

The Problem:
• The Xenon code base had outgrown its initial design
• Interdependencies were becoming a burden
• Developers weren’t always sure where to put new code
• The GUI Client JARs were bloated
• Build times were over an hour

The Solution:
• Define a new standard for Xenon modules
• Define a new overall architecture
• Refactor existing code to the new structure

Refactoring: to make changes to a body of code in order to improve its internal 
structure, without changing its external behavior. 



6

What is a Module?

A cohesive unit
• Libraries
• Business functionality

Functional Module
Business concept

• Trades
• Market Data
• Reports

• Infrastructure services
• A component

In Xenon:
Architectural Module
A Maven project

• Domain
• GUI
• Lib



7

What is a Module?

Definitions from Documenting Software Architecture: Views and Beyond 
(Clements, Bachmann, Bass, et. al.)

• An implementation unit that provides a coherent unit of functionality
– Mostly design-time entity
– Static element (as opposed to “component”)

• Purpose
– Decomposition of a whole (reduce complexity)
– Encapsulation
– Information hiding

• Characteristics
– Name (with possible namespaces)
– Interface/list of responsibilities
– Relationships: is part of (decomposition), uses, allowed to use, inherits from

à For our purposes, a module is a Maven project



8

Xenon Modules: A History
In there beginning there were a few clearly-defined modules



9

Xenon Modules: A History
As the application grew, so did the dependencies



10

Xenon Modules: A History
New functionality sometimes brought new modules



11

Xenon Modules: A History
Performance and quality of service enhancements left their marks



12

Xenon Modules: A History
Efforts were made to improve the design and increase reusability



13

Xenon Modules: A History
And sometimes, entire functional units were rewritten



14

Causes of Decay

“Copy-paste Architecture” (aka “Architecture by Accident”):
• Focus not on long-term impacts
• May have many conflicting conventions 

– “Magic 8-Ball” decisions

“Big Ball of Mud” design patterns:
• It may not be pretty, but it works
• http://www.laputan.org/mud/



15

Causes of Decay

• Wrong reasons to create a module:
– Created for a project (too transient)
– “False start” redesign (refactoring without analysis and standardization)
– Not sure which module should host new code

• “Allowed-to-use” = will use
– Java enforcement of layered architecture limited at best

• Invisible architecture
– Can’t control what you can’t see

• Xenon-specific issues:
– ObjectStore created inertia against refactoring
– Reuse of strong Domain Model in client led to GUI-specific concerns in model



16

Signs of Decay
Due to dependencies, a small code change could have a large impact



17

Signs of Decay
Black Hole Effect: It is not always possible to place code where it “belongs”



18

Signs of Decay
Proliferation of undefined special-purpose modules can cause confusion



19

Signs of Decay
Coarse-grained modules force deployment of unnecessary code



20

Signs of Decay
Cyclic dependencies may force rebuilds and testing of unchanged code



21

Problems with Packages

• Package name didn’t indicate module membership
– A consequence of ObjectStore and a previous attempt at 

remodularization
• No consistent standard
• Many packages didn’t reflect a layered structure
• Developers were unsure where to put new code
• Too many classes in a single package

– Rather than make another arbitrary decision, easier to use 
existing package

• Lack of Java support to enforce layering
– Reverse and cyclic dependencies common



22

The Solution: Remodularization

Objectives:
• Define a clear and simple overall architecture
• Provide a clear standard for future development
• Reduce build times
• Reduce maintenance time / increase productivity
• Improve application flexibility



23

Challenges

• Hard to measure business value
– Project was already “sold”, but wanted to track benefits
– Hard to measure opportunity costs

• Have to do it during ongoing development
– Can’t stop the train
– Can’t leave anything half-working
– Developers can’t become “disoriented”
– How to do it once and make sure we don’t backtrack?
– Very limited resources (1 dev + team lead + architect)

• Multiple branches
– Refactoring in trunk complicates merges from other branches



24

Project Strategy

3 phases:
• Analysis (1 month)

– Structure101
• Tools and Preparation (2 months)

– Maven 2
– Hudson
– Structure101
– IDE support

• Active Remodularization (ongoing)
– Structure101
– Eclipse/IntelliJ
– Subversion (can’t lose history!)



25

Phase I: Analysis & Planning

• Produce first draft of module standards
• Objectives, risk analysis, project strategy
• Top-down:

– General principles for modules
– How to achieve objectives

• Bottom-up:
– Structure101:

• Analysis of existing dependencies
• Design of new modules
• “Simulation” of refactoring

– Work in cooperation with Team Leads & members
– Not all violations can be resolved by moving classes

• Remaining Structure101 layering violations require code changes



26

Signs You May Need a New Module
Deployment: different code groupings located in separate nodes or tiers



27

Signs You May Need a New Module
Reuse: functionality required by multiple modules



28

Signs You May Need a New Module
Functional cohesion: different groups of responsibilities



29

Signs You May Need a New Module
Optionality: functionality not always required or available



30

Signs You May Need a New Module
Isolation: protect more stable code from frequent changes



31

Analysis Methodology – Architecture Diagrams

• Structure101 diagrams define:
– Compostion
– Layering 
– Visibility
– Mapping to code (patterns)

• Show current violations 
• Adjustable level of detail
• Spread architecture over multiple 

diagrams so each is a simple 
“mind-sized chunk”

• Diagram editor used for analysis + 
definition



32

Analysis Methodology
Start with the top-level view provided by Structure101



33

Analysis Methodology
Pick a subject, and add a “bucket” layer for related code



34

Analysis Methodology
Select related classes and move to the “bucket”



35

Analysis Methodology
Follow dependencies to find related code



36

Analysis Methodology

Repeat as necessary until 
analysis is complete

The resulting diagram 
serves as a roadmap for 

refactoring

Reverse-dependencies 
that remain will require

modifications to the code



37

Application Tiers vs. Functional Modules



38

Basic Pattern

This pattern is repeated for each of the basic functional modules:
– Trades, Market Data, Reference Data, CNI, etc.

GUI

• GUI code

• Uses remote version of service 
locators

• Depends on gui libraries, 
domain modules 

Domain

• Business domain objects

• Service interfaces

• Service locator interfaces

• Remote service locator 
implementation

• May use other domain modules

Server

• Service implementations

• May use service interfaces and 
domain objects of other domain 
modules

• May use local or remote version 
of service locators

1. Physical deployment 2. Reusability



39

Server Layers



40

GUI Layers



41

Remodularized Packages

com.sknt.xenon.<module>.<submodule>.<layer/type>

Examples:
– com.sknt.xenon.domain.trade.lib
– com.sknt.xenon.server.reference.persistence.dao
– com.sknt.xenon.gui.trade.guiservice
– com.sknt.xenon.domain.market.volatility.dto

Benefits: 
– Identify module & layer by package name
– Provide better cohesion via smaller packages
– Enable enforcement via simple rules in Structure101

• E.g. *.dao.* is not allowed to use *.service.*



42

Phase II: Preparation & Tools

• Redesign Maven build
– Maven 2 for more standardization
– Remove awkward scripts
– Module = JAR
– Generate Maven 2 reports

• Hudson
– Continuous integration
– Previously, Hudson had to delegate to a perl script

• Structure101
– IDE Plugins (Eclipse, IntelliJ)
– Break the build on layer violations

• Note that only NEW violations should break it!



43

Phase II: Details

• Work done directly in main branch
– Old build unaffected

• POMs don’t affect Maven 1 project files
– Developers hardly noticed

• All “future” modules created in a subdirectory called “modules”
– Developers not distracted by dozens of empty new modules
– POMs fully configured, but no code moved

• New root folder created for “packaging”
– EARs, WARs, etc.
– Before, was done by custom script
– Now, Maven 2 standard methods



44

Phase II: Details

• Rollout plan
– Present “Remodularization”

• Where do I put new code?
• Should developers move code to new modules themselves?
• How do I find stuff?
• How do I know what’s already been remodularized?

– Training on new dev environment (changes minor)
– Update internal documentation
– Wait for start of next big project before switchover

• First big change:
– Moved “old” modules to “modules-picasso” subdirectory



45

Phase III: Remodularization

• Work is still ongoing
• Mini-projects

– 1-3 developers only
– Major input from “module owners”
– Avoid impacting new work, but piggy-back off of other regression testing

• Must be able to stop Remodularization at any milestone and start again 
later
– Project can survive shifting priorities
– Have to prevent decay during downtimes



46

Phase III: Remodularization

First targets:
• GUI “Tier”

– Lowest afferent coupling
– Early benefits (GUI size, code clarity)
– GUI team more “available”

• CNI Functional Module
– Architectural “Tracer bullet”
– Least “legacy” of modules
– Not conflicting with new development



47

Dealing with Dependency Cycles

Need to avoid creating dependency “tangles” between modules
• A “tangle” is always a violation of the Structure101-defined 

architecture layering
• A module-level tangle means the application won’t compile!
• Choose: only old modules depend on new, or new modules depend on 

old
– We chose latter approach in order to start at “top” of dependency tree 

(smaller impact at beginning)
– Rule of thumb: any class can be moved to the new modules as soon as all 

the classes which depend on it are in the new modules. 
• Tangles need to be moved as a whole, or tangle must be broken



48

Dealing with Dependency Cycles
Tangles must be moved as a whole, or rewritten



49

Dealing with Dependency Cycles
Cycles may be broken by splitting a class along lines of responsibility



50

Dealing with Dependency Cycles
Dependencies may be reversed via observer, registry or factory patterns



51

Preventing Decay

• Presentations not enough
– First time this presentation was shown to developers, a test was given. 

Only about 50% really “got it”.
• Focus on tools for communication & enforcement

– Structure101 IDE Plug-in
– Maven build
– Findbugs
– SVN commit hooks



52

Communication & Enforcement



53

QA Strategy

• JUnit and FIT tests to enable refactoring with confidence
• Strong QA department

– Fully-documented suite of regression tests
– 80% automated
– Load & performance, integration and stress tests

• Dependency matrix to determine which regression tests required
– Show Structure101 matrix
– Needed to maintain additional list of runtime dependencies:

• Reflection
• Messaging
• Configuration files (esp. when class names involved)
• XML (esp. serialized objects)

• Regression tests often covered by other work



54

Results
Previously, growth in the code base was accompanied by a growth in complexity

(“XS” is a Structure101 measure of structural complexity, including “tangles”)



55

Results
Now, structural complexity is decreasing even as the number of lines increases



56

Results

Advantages of new model:
• Clearer architecture

– Can tell module by package name
– Can tell tier by package name
– Layering now visible

• Can assign ownership of modules to teams
– Work allocation view
– Team leaders can be responsible for maintaining good design, statistics



57

Results

• Developers now “get it”
– All on same page
– Opened the door for new discussions about design
– Developers know where to put new code

• Reduced dependencies
• Faster build
• Reduced scopes for regression testing
• Decay prevented through instant feedback and enforcement
• Increased application flexibility

– Standard pattern for new and plug-in modules
– Many “remodularized” components rewritten with registry features


