
 1

Taming the complexity:
The need for program understanding in

software engineering
Raghvinder S. Sangwan, Ph.D.

Pennsylvania State University, Great Valley School of Graduate Professional Studies

Robert Glass notes that one of the fallacies of software engineering education is teaching

people how to program by showing them how to write programs 1. Corbi also points out

that unlike classical language disciplines such as English where students are taught basic

language skills and writing techniques, and required to read and critique various authors

before they can go on to become copy editors or authors for major publications there is a

lack of similar education for computer science and software engineering students 2. Software

engineers learn about software design principles, patterns, paradigms and programming

languages, and are expected to produce high quality designs and code, often without ever

having seen good examples. Learning by reading is an underused method in computing but

is used effectively in many other disciplines.

It has been suggested that it may be so because companies protect the code for their

software systems as a trade secret and so, there has been a lack of real -world high quality

code to study. The situation is, however, changing with the availability of large number of

high quality open source software systems. The first part of this paper describes a course

developed by the faculty of Pennsylvania State University which seeks to educate graduate

software engineering students in program understanding techniques with the objective that

they can now learn to write good quality code by reading and critiquing these open source

systems. In addition, these techniques can help them understand and possibly modify

 2

publicly available code. They can learn to use the code as a specification when no other

reliable documentation exists.

The need for software engineers to acquire the skill set to understand and critique software

systems is becoming increasingly important for other reasons. Many organizations still rely

on legacy systems, and more often than not these systems are significantly large and

complex. As they become large and complex, it is usually the case that the legacy systems

have outdated or little supporting documentation and the engineers who worked on them

have long since left. It, therefore, becomes necessary to extract high level design from low

level code to better understand these systems and periodically restructure them to meet

future needs. If not evolved systematically, these systems can likely become too complicated

making future maintenance and evolution activities difficult and cost prohibitive. The latter

part of this paper shows the systematic application of the program understanding techniques

on an open source software system to demonstrate how these techniques can be effective in

managing complexity as a system evolves over its lifetime.

Program understanding in software engineering curriculum

The course in program understanding at the Pennsylvania State University exposes the

graduate software engineering students to the techniques and strategies for understanding

and analyzing large software systems. Through program slicing, reverse engineering and

software visualization they learn to construct abstract representations of the system that can

be explored in a systematic way. Through this exploration, they begin to discriminate

between systems that are inherently complex and those that are unnecessarily complicated.

Such insights are followed by techniques to transform a system to a more desirable form.

 3

Table 1 gives a high level overview of the course modules, their corresponding topics and

learning outcomes.

Table 1: Program understanding course model

Module Topics Learning outcome
Program understanding
problem

Program interleaving Demonstrate in exposition the complexity
of program understanding Computational complexity

Program understanding
techniques and strategies

Program slicing Demonstrate in understanding programs
the ability to use different techniques and
strategies

Reverse engineering

Software visualization

Assessing quality of
software design

Design principles Demonstrate in assessing programs the
knowledge of good design principles and
software quality metrics

Software metrics

Improving quality of
software design

Refactoring & continuous design Demonstrate in transforming programs the
knowledge of strategies for code
restructuring and enhancement Testing and migration

The first module starts with an overview of the program understanding problem. Students

are shown that one of the factors making understanding programs difficult is program

interleaving 3 – contiguous sections of code can often contain fragments intended to

accomplish seemingly unrelated tasks. Program understanding problem is computationally

difficult 4 and, therefore, it is a challenge to reconstruct the architecture and recover the

design of a system from its low-level code.

Given this background, program understanding techniques and strategies, such as program

slicing, reverse engineering and software visualization, are introduced in the next module.

Program slicing is a decomposition technique that extracts from a program, statements

relevant to a particular computation 5. Reverse engineering is used to identify system

components and their interrelationship (architecture reconstruction) and creating

representations of a system at a higher level of abstraction 6. Software visualization makes an

intangible software system that has no physical shape or size visible by using graphical

techniques that display programs, program artifacts and program behavior 7.

 4

The next module in the course deals with assessment of the quality of software design.

Object-oriented design patterns / heuristics 8 are discussed and metrics 9 are introduced that

measure aspects of a system that are demonstrably good. Most positive properties of a

system are, however, qualitative and not quantitative making them difficult to measure.

These include qualities such as performance, reliability, availability, security, testability and

usability. The goal-question-metric paradigm 10 is discussed as a possible mechanism that can

be used for systematic specification of metrics under such circumstances.

The final module discusses the techniques for improving the quality of software design.

Refactoring is introduced as a behavior preserving transformation that improves the internal

structure of the system 11. Testing is also introduced as a strategy to enable software

evolution while minimizing the risks of change 11.

As a part of the course, students are also assigned a project where they are asked to select

and study an open source software system using a combination of tools for program

comprehension, transformation, and design and quality assessment.

Program understanding in practice

Program understanding techniques provide means for software engineers to systematically

investigate and understand systems using their code as the specification when no other

reliable documentation exists. These techniques can also help uncover the hidden

complexity in the system prompting steps to prevent it from becoming too complicated. We

put these ideas into practice by reengineering an existing open source imaging system,

Kahindu, to make it more maintainable, reusable and generally simpler to understand and

extend 12.

 5

In order to analyze Kahindu, we used a code comprehension and analysis tool called

Structure101 (http://www.structure101.com). Structure101 can reverse engineer an existing

software system creating a high level abstract model of its structure. At its highest level, the

model is represented as a hierarchical directed graph showing system modules and their

relationships. One can progressively drill down each module revealing its substructure and

at the lowest level, the constituent software classes, their attributes and methods. The model

for Kahindu is shown in Figure 1.

http://www.structure101.com/

 6

Figure 1: (a) Module dependency graph for Kahindu. Nodes represent modules and edges

represent dependencies; tangles are marked, with highlighted edges representing the

 7

minimum feedback set. (b) Structure of the gui module. (c) Conceptual architecture of a

partition within the gui module

Figure 1(a) shows the model at highest level of abstraction with eight modules.

Dependencies among modules are shown as arcs with the labels on the arcs representing

number of dependencies. For example, the gui module has 30 dependencies on the vs

module and the vs module has 4 dependencies on the gui module. The model also shows

tangles – groups of modules directly or indirectly dependent on each other due to cyclic

dependencies. For example, at this level, Kahindu contains a tangle of 3 consisting of vs,

gui and dclap modules. The highlighted edges (edge from vs to gui, and gui to

dclap) within a tangle represent a minimum feedback set – if the dependencies represented

by these edges are removed, the tangle goes away. Cyclic dependencies are not desirable as

they make the design of a system rigid, fragile and difficult to reuse.

Drilling down into the modules of Kahindu shown in Figure 1(a) revealed gui to be the

most complex module – this single package represents 70% of the entire code base and

contributes significantly to the excessive complexity in Kahindu. The structure of this

module is shown in Figure 1(b). Due to limited real estate, it is hard to see the names of the

classes, the number of their dependencies and the tangles (in the tool you can zoom into the

area of interest). The structure, however, does give one a sense of a complicated module

consisting of over 5000 dependencies and 5 tangles. In addition to tangles (shown in

brown), Figure 1(b) also partitions the graph into clusters (shown in gray). A cluster groups

nodes that are close together in a dependency graph suggesting a cohesive group of classes

that is loosely coupled with classes in other clusters and, therefore, can potentially be

separated into its own module. There are 4 clusters in this figure.

 8

Each partition in Figure 1(b) can be examined more closely by laying out its conceptual

architecture. We show this in Figure 1(c) for one of the most offending partition in the gui

module. The conceptual architecture uses an arrangement of cells with the top down

structure indicating layering – cells should be used only by cells in the higher layers.

Dependencies across cells that break this principle are shown as dotted arrows. There are 27

such violations (each arrow represents one or more violating dependency).

The Kahindu system can be further analyzed in detail using object-oriented metrics such as

those shown in Table 2.

Table 2: Metrics for the Kahindu system

Metric Measure Analysis

Response factor for a
class

Average: 13.503
Maximum: 103

High response factor makes classes difficult to
understand, test and debug

Depth of inheritance
hierarchy

Average: 1.567
Maximum:19

Deep inheritance hierarchy implies complex design
that is harder to understand and test

Data classes 25 Data classes break encapsulation
Feature envy classes 8 Feature envy classes break encapsulation

Large classes Average method count: 9.737
Maximum method count: 75

Too many responsibilities packed into a class
making it incohesive

Overall then it is evident that Kahindu’s design is overly complex and is need of major

refactoring. To improve its design, we started with the basic requirements for Kahindu.

Kahindu is used for displaying images stored in various file formats such as PPM, JPEG and

GIF. These images are then transformed in a number of ways such as making the image

lighter or darker, converting color image to grayscale, creating a negative image, filtering or

sharpening the details in the image and outlining the boundary of objects in the image via

edge detection. This is a sequential process implying there may be a need to undo one or

more steps, or starting all over again from the original image if a given sequence of

transformations does not produce the desired result. Apart from these basic functional

requirements, the system needs to be extensible such that future requirements to handle

 9

additional file formats, additional filters and transformation algorithms can be easily

accommodated.

Once the requirements were understood, we created a domain model for Kahindu that

showed the real world conceptual classes in the image processing problem domain and their

interrelationships. The goal here is to use this model as a motivator for designing software

classes reducing the representation gap between how the world of image processing is

perceived and how a system designed for this world is implemented. The domain model is

shown in Figure 2(a). The fundamental conceptual classes in this model are an

ImageLoader that loads an Image from which an ImageModel is created that is

subsequently transformed by an ImageTransform.

Using the fundamental requirements and the domain model, a design class diagram for

Kahindu was created as shown in Figure 2(b).

 10

Figure 2: (a) Domain model for Kahindu. (b) Design model for Kahindu.

A number of design patterns were used in the design model to address the non-functional

requirement that Kahindu should be flexible enough to easily accommodate future

requirements. The patterns include the factory pattern to handle additional file formats,

strategy pattern to handle additional filters and transformation algorithms. The decorator

pattern was used for chaining together a sequence of transformations on a given image

allowing those to be undone if so desired. Once the refactored system was designed, we

performed an analysis similar to the original Kahindu system. The high level abstract model

for the new system is shown in Figure 3(a). The loader module is responsible for loading

an image, the imagemodel transforms the loaded image, and the view module displays

the image. The utils module contains utility functions used for timing measurements of

 11

the various transformation algorithms. Unlike the original Kahindu system, the new system

has no tangles at this level.

Figure 3: (a) Module dependency graph for refactored Kahindu. (b) Structure of the

loader module. (c) Conceptual architecture of the loader module.

Drilling down into the various modules reveals loader module to be the most complex

but much simpler than the gui module of the original Kahindu system. The structure of

this module is shown in Figure 3(b). The dependency graph at the top in the figure shows

 12

one tangle with a minimum feedback set consisting of a single edge from

PNMImageLoader to PNMImageFormatFactory. The same dependency appears as

a violation (shown as a dotted arrow) in the conceptual architecture diagram in Figure 3(c).

On closer analysis, one discovers that the PNMImageLoader is using the

PNMImageFormatFactory to correctly load its image; therefore, this dependency.

Alternative design strategies can be explored to remove this dependency and eliminate the

tangle.

Compared to the original Kahindu system, the design of the refactored system is more

flexible making it simpler to add new functionality, algorithms and image formats while

minimizing code changes and maximizing code reuse. The patterns used result in

lightweight, loosely coupled and highly cohesive modules improving the maintainability,

reliability and integrity of the resulting system. This significant improvement is also reflected

in the metrics for the refactored system shown in Table 3.

Table 3: Metrics for the refactored system

Metric Measure Comparative Analysis with the Original System

Response factor for a
class

Average: 7.31
Maximum: 54

Reduced by half

Depth of inheritance
hierarchy

Average: 0.207
Maximum: 1

Average reduced by a factor of 7 and the maximum
reduced by a factor of 19

Data classes 1 Data classes virtually eliminated
Feature envy classes 0 Feature envy classes eliminated

Large classes Average method count: 5.44
Maximum method count: 35

Method count reduced by half

Conclusions

One of the objectives of the program understanding course is to help software designers and

developers become more effective in doing design and code reviews, and introduce software

 13

architects to techniques and strategies for architecture reconstruction and for monitoring

systems for architectural conformance. The graduate professional students who enroll in

this course have found it to be very useful in this regard and student evaluations of the

course assessed through official university course evaluation instruments have been high.

Summarizing student comments and feedback several useful outcomes are apparent. They

find this course most useful for projects involving reengineering of legacy systems.

Techniques in program understanding are useful for software maintenance as well; more

than half the time during maintenance is spent understanding the system. Students feel that

they are now better armed to not only factor in this time for project deliverables but also

educate the project management community on the importance of integrating program

understanding tools, techniques and strategies into their software development projects.

The students, however, find that no single technique in itself is sufficient but a number of

program understanding techniques combined together are more effective.

Program understanding is a hard problem to solve. This makes it challenging and expensive

to work with poorly constructed legacy systems. As the proverb goes, “Pay me now or pay

me much more later.” It is important to stress then that we must focus on creating systems

that are easier to understand, maintain and enhance in the future. This is the most

significant objective of the course, and techniques for manual code reading, software

visualization, and automatic and semi-automatic approaches to assessment and improvement

of design and code quality go a long way in supporting this goal.

 14

Acknowledgement

I would like to thank Drs. Phillip Laplante and Colin Neill for their support in developing

this course and Dr. Stan Rifkin for providing valuable suggestions in improving this

manuscript.

References

1. Glass, R. Facts and Fallacies of Software Engineering, Boston, MA: Addison-Wesley, 2002.

2. Corbi, T. Program Understanding: Challenge for the 1990s, IBM Systems Journal, 28(2), 1989, pp. 294 – 306,

1989.

3. Rugaber, S., Stirewalt, K., and Wills, L. The Interleaving Problem in Program Understanding, Second

Working Conference on Reverse Engineering, Toronto, Ontario, Canada, July 14 – 16, 1995, pp. 166 – 175.

4. Woods, S. and Yang, Q. Program Understanding Problem: Analysis and a Heuristic Approach, IEEE

Proceedings of the International Conference on Software Engineering, Berlin, Germany, March 25 – 29, 1996, pp. 6 –

15.

5. Weiser, M. Program Slicing, Proceedings of the 5th International Conference on Software Engineering, San Diego,

California, USA, March 1981, pp. 439 – 449.

6. Chikofsky, E. and Cross, J. Reverse Engineering and Design Recovery: A Taxonomy, IEEE Software, vol.

7, no. 1, January 1990, pp. 13 – 17.

7. Lanza, M. Object-Oriented Reverse Engineering - Coarse-grained, Fine-grained, and Evolutionary Software Visualization,

Ph.D. Thesis, University of Berne, Switzerland, 2003.

8. Riel, A. Object-Oriented Heuristics, Reading, MA: Addison-Wesley, 1996.

9. Chidamber, S., and Kemerer, C. A Metrics Suite for Object-Oriented Design, IEEE Transactions on Software

Engineering, 20(6), June 1994, pp. 476 – 493.

10. Basili, V. and Weiss, D. A Methodology for Collecting Valid Software Engineering Data, IEEE

Transactions on Software Engineering, vol. 10, 1984, pp. 728 - 738.

11. Demeyer, S., Ducasse, S., and Nierstrasz, O. Object-Oriented Reengineering Patterns, San Francisco, CA:

Morgan Kaufmann, 2003.

 15

12. Sangwan, R., Ludwig, R., Neill, C. and Laplante, P., “Design Improvements and their Impact on

Performance of an Imaging Framework,” Journal of Imaging Science and Technology, Volume 49, Number 2,

March/April 2005, pp. 154 - 162.

